

Anti-Infective Agents

Sara Rasoul-Amini, Pharm D, PhD in Medicinal Chemistry; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences (SUMS)- Nov2024

History of Chemotherapy

- Latter half of 19th century
- Paul Ehrlich: Ehrich's principles of chemotherapy (1904):
- chemicals could directly interfere with the proliferation of microorganisms (MOs)
- at concentrations tolerated with the host.
- This concept is popularly known as the magic bullet:
- could search out & destroy invading microorganism
- without adversely affecting the host
- Selective toxicity: greater toxicity to microorganisms
- Chemotherapeutic index: therapeutic index: compare Min.
 effective dose to Max. tolerable dose

Anti-Infective Agents & Meaning of Related Keywords

- Local acting known as:
- germicide: prevent infection by inhibiting growth or action of MO
- sanitizer: reduce microbial load from an inanimate surface
- antiseptic: disinfecting chemical agent:
 acout used to inhibit bacterial growth in vitre %
- agent used to inhibit bacterial growth in vitro & in vivo
- ✓ disinfectant: agent to kill MO in inanimate environment
- detergent: a surfactant with cleaning efficacy on surfaces
- ✓ sterilant
- hand hygiene
- Biologically systemic acting anti-infective agents as:
- ✓ preservative
- anti-protozoal; anti-parasitic; anti-bacterial; anti-fungal;
- anti-tubercular (anti-mycobacterium); anti-malarial; anthelmintic

TABLE 50-2 Commonly used terms related to chemical and physical killing of microorganisms.

Antisepsis	Application of an agent to living tissue for the purpose of preventing infection					
Decontamination	Process that produces marked reduction in number or activity of microorganisms					
Disinfection	Chemical or physical treatment that destroys most vegetative microbes and viruses, but no spores, in or on inanimate surfaces					
Sanitization	Reduction of microbial load on an inanimate surface to a level considered acceptable for public health purposes					
Sterilization	A process intended to kill or remove all types of microorganisms, including spores, and usu- ally including viruses, with an acceptably low probability of their survival					
Pasteurization	A process that kills nonsporulating microor- ganisms by hot water or steam at 65–100°C					

Factors Involved in Effectiveness of Anti-Infective Agents

- MO intrinsic resistance
- Number of MO
- Target size
- Duration exposure time
- Temperature of exposure
- pH of target environment
- Hydration of target environment

Chemical Classification of Local Anti-Infective Agents

- Alcohols: EtOH; isopropyl alcohol
- Acids: acetic acid; benzoic acid; p-OH-benzoic acid
- Iodine: alcoholic solution; povidone iodine
- Aldehydes: formalin (fomaldehyde); Glutaraldehyde
- Phenols: alkyl; aryl; para-halogen: Phenol Coefficient
- Oxidizing agents: peroxides
- Halogen containing derivatives
- Cationic surfactants & structures: aryl alkyl ammonium; biguanides
- Mercural salts & derivatives
- Polycyclic aromatics: dyes
- Ethylene oxide: as sterilant
- Nitrofuran derivatives
- Miscellaneous

Activity Potential of Antiseptic Agents

TABLE 50–1 Activities of disinfectants.

	Bacteria			Viruses			Other		
	Gram- Positive	Gram- Negative	Acid-Fast	Spores	Lipophilic	Hydrophilic	Fungi	Amebic Cysts	Prions
Alcohols (isopropanol, ethanol)	HS	HS	S	R	S	V	_	—	R
Aldehydes (glutaraldehyde, formaldehyde)	HS	HS	MS	S (slow)	S	MS	S	—	R
Chlorhexidine gluconate	HS	MS	R	R	V	R	_	_	R
Sodium hypochlorite, chlorine dioxide	HS	HS	MS	S (pH 7.6)	S	S (at high conc)	MS	S	MS (at high conc)
Hexachlorophene	S (slow)	R	R	R	R	R	R	R	R
Povidone, iodine	HS	HS	S	S (at high conc)	S	R	S	S	R
Phenols, quaternary ammo- nium compounds	HS	HS	MS	R	S	R	S	—	R

conc, concentration; HS, highly susceptible; MS, moderately susceptible; —, no data; R, resistant; S, susceptible; V, variable.

Sara RAmini, Nov2024

Alcohols as Anti-Infective Agent

- Ethanol: CH₃CH₂OH
- Isopropyl alcohol: (CH₃)₂CHOH
- 60-90% by volume in water: efficient partition coefficient
- MOA: protein denaturation
- Alcohol based hand rubs is suggested by CDC(P)
- Consider inflammability of alcohol
- Rapidly active against vegetative MO including bacteria even MT, fungi & inactivating lipophilic virus
- Not against spores & hydrophilic viruses

Alcohol & Iodine Mixture as Anti-Infective Agent

- Glycerin Iodide:
- iodine (0.15-15%) & glycerin (30-87%)
- ✓ iodinated glycerol
- ✓ a homogenous solution

Iodine Tincture as Anti-Infective Agent

- I_2 in 1:20,000 dilution in alcohol: bactericidal
- I₂ (2%) & NaI (2.4%) in alcohol
- Disadvantage: sensitivity & staining characteristics

Iodine (Povidone Iodine: Betadine[®]) as Anti-Infective Agent

- Povidone: Poly-Vinyl Pyrrolidone (PVP)
- A iodophore: provides I_2 in 1:20,000 or 0.005% dilution: bactericidal
- MOA: protein denaturation & bacteria precipitation
- Against virus, bacteria, spore, fungi & protozoa
- Sporicidal but not persistent activity
- Sore throat gargle:1% w/v PVP-I₂; 0.1% w/v I₂

Acids as Anti-Infective Agent

Phenols as Anti-Infective Agent

- Phenol derivatives:
- cresol: alkylated phenol
- thymol: alkylated phenol
- ✓ resorcinol
- ✓ eugenol
- MOA:
- ✓ disrupt CW & CM of MO
- precipitate proteins
- inactivates enzymes
- ✓ proteolytic: 5-7%
- Consider phenol coefficient

Phenols as Anti-Infective Agent: Hexachlorophene

- Organo-chlorine compound
- 2-3% solution in surgical scrub, handwash products (soaps),
- toothpaste & detergent creams
- MOA: bacteriostatic

- SE: CNS toxicity; skin damage in long exposure:
- hence, was banned as non-prescription agents since 1972

Biguanide as Anti-Infective Agent: Chlorohexidine

- Chemistry: bi-guanide like cationic structure:
- di-cation form in physiological pH
- with no systemic absorption
- Low water solubility:
- improved water solubility in di-gluconate salt
- MOA: strongly adsorbed on MO cell membrane:
- cause leaking membrane
- ✓ active in pH=5.5 to 7; 4% is optimum concentration
- In combination with alcohol: rapid, retained & persistent activity
- Topical & local antiseptic applied in:
- pre-operative skin disinfection; wound irrigation
- mouthwash: as prescription item: in gingivitis & gum inflammation
- Inactivated with anionic detergents

Alcohol/Phenol as Anti-Infective Agent

- Glycerin Phenique or Phenol Glycerin:
- prepared of : glycerin & phenol:
- ✓ +/- camphor
- applied as ear drop

Halogen Containing Derivatives as Anti-Infective Agents

- Inorganic chlorine derivatives: sodium hypochlorite (5.25%)
- N- chloro derivatives:
- ✓ to produce HCIO (hypochlorous acid) in aqueous media
- 5 to 10000 ppm regarding the type of MO
- CIO⁻: less active than HCIO
- MOA:
- ✓ oxidation of thiol (-SH) in proteins
- N- chlorination of amino acids

Cationic Surfactants as Anti-Infective Agents

- Cetyl pyridinium Chloride:
- chemistry: alkyl pyridinium derivatives
- Applied in:
- ✓ mouth wash
- ✓ throat lozenges

Aldehydes as Anti-Infective Agents

- Formalin (formaldehyde: HCHO): 4 to 40%
- Glutarol (glutaraldehyde): 2-10%

- pH is important in the efficacy
- Against wart

CH3 Mouthwash: Listerine®

LISTERINE[®] TOTAL CARE

- Menthol:
- Eucalyptol or cineol:
- monoterpenoid bicyclic ether
- ✓ cooling taste
- insoluble in water; camphor like odor
- Insecticidal & insect repellent
- Relieves throat irritation
- Weak k opioid receptor agonist

Active Ingredients

Eucalyptol 0.091% w/v, Thymol 0.063% w/v, Menthol 0.05% w/v, Sodium Fluoride 0.05% w/v, Zinc Chloride 0.09 % w/v

Inactive Ingredients

Alcohol, Aroma (flavor), Benzoic Acid, Blue 1, Methyl Salicylate, Poloxamer 407, Red 40, Sodium Benzoate, Sodium Saccharin, Sorbitol, Sucralose, Water (eau)

Mercural Derivatives as Anti-Infective Agents

- Ammonium mercury chloride: salts of Hg: Hg(NH₂)Cl
- ✓ Nitromersal

merbromine (mercuro-chrome): 2% solution:

Clinical effect: antiseptic: bacteriostatic

Sara RAmini, Nov2024

Polycyclic Aromatic Dyes as Anti-Infective Agents

- Basic fuschine • Methylene blue $H_{3}C_{+} + f_{+} + f_{$
- Gentian violet: hexa-methyl p-rosaniline

• MOA: interacts positive ions in CW & DNA